Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 933364, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36091748

RESUMO

Clinical and preclinical studies show evidence that chronic stress or nutritional deficits in dietary zinc (Zn) intake may be risk factors for developing major depressive disorder (MDD). Furthermore, there may be possible links between low serum Zn levels and development of treatment-resistant depression. In the present work, we combined chronic restraint stress (CRS) and a low-zinc diet (ZnD) in mice and carried out a set of behavioral and biochemical studies. The mice were treated with four different antidepressant compounds, namely, ketamine, Ro 25-6981 (Ro), hyperforin and lanicemine (Hyp + Lan), and imipramine (IMI). We show that CRS or ZnD alone or a combination of CRS and ZnD (CRS + ZnD) induces anhedonia observed in the sucrose preference test (SPT). The behavioral effects of CRS were restored by ketamine or IMI. However, only Hyp + Lan restored the deficits in behavioral phenotype in mice subjected to CRS + ZnD. We also showed that the antidepressant-like effects observed in Hyp + Lan-treated CRS + ZnD mice were associated with changes in the morphology of the dendritic spines (restored physiological level) in the hippocampus (Hp). Finally, we studied the metabolism of ketamine and its brain absorption in CRS and CRS + ZnD mice. Our results suggest that CRS + ZnD does not alter the metabolism of ketamine to (2R,6R;2S,6S)-HNK; however, CRS + ZnD can induce altered bioavailability and distribution of ketamine in the Hp and frontal cortex (FC) in CRS + ZnD animals compared to the control and CRS groups.

2.
STAR Protoc ; 3(3): 101659, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36097387

RESUMO

The complexity of the depressive symptoms observed in humans makes modeling depressive behavior in rodents challenging. Here, we present a highly reproducible protocol to generate mouse models that mimic several aspects of depression, namely anhedonia and loss of motivation. We describe acclimatization of animals and baseline determination, followed by the chronic unpredictable stress (CUS) protocol to induce anhedonic and resilient behaviors. The protocol can generate anhedonic and resilient mice at roughly equal frequencies, providing a reliable model for translational research. For complete details on the use and execution of this protocol, please refer to Baczynska et al. (2022), Bijata et al. (2022), and Krzystyniak et al. (2019).


Assuntos
Anedonia , Estresse Psicológico , Animais , Modelos Animais de Doenças , Testes de Função Cardíaca , Humanos , Camundongos , Camundongos Endogâmicos C57BL
4.
Cell Rep ; 38(11): 110532, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35294881

RESUMO

Major depressive disorder is a complex disease resulting from aberrant synaptic plasticity that may be caused by abnormal serotonergic signaling. Using a combination of behavioral, biochemical, and imaging methods, we analyze 5-HT7R/MMP-9 signaling and dendritic spine plasticity in the hippocampus in mice treated with the selective 5-HT7R agonist (LP-211) and in a model of chronic unpredictable stress (CUS)-induced depressive-like behavior. We show that acute 5-HT7R activation induces depressive-like behavior in mice in an MMP-9-dependent manner and that post mortem brain samples from human individuals with depression reveal increased MMP-9 enzymatic activity in the hippocampus. Both pharmacological activation of 5-HT7R and modulation of its downstream effectors as a result of CUS lead to dendritic spine elongation and decreased spine density in this region. Overall, the 5-HT7R/MMP-9 pathway is specifically activated in the CA1 subregion of the hippocampus during chronic stress and is crucial for inducing depressive-like behavior.


Assuntos
Região CA1 Hipocampal , Transtorno Depressivo Maior , Animais , Região CA1 Hipocampal/metabolismo , Transtorno Depressivo Maior/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Receptores de Serotonina/metabolismo
5.
Sci Rep ; 12(1): 2506, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169214

RESUMO

Dystroglycan (DG) is a cell membrane protein that binds to the extracellular matrix in various mammalian tissues. The function of DG has been well defined in embryonic development as well as in the proper migration of differentiated neuroblasts in the central nervous system (CNS). Although DG is known to be a target for matrix metalloproteinase-9 (MMP-9), cleaved in response to enhanced synaptic activity, the role of DG in the structural remodeling of dendritic spines is still unknown. Here, we report for the first time that the deletion of DG in rat hippocampal cell cultures causes pronounced changes in the density and morphology of dendritic spines. Furthermore, we noted a decrease in laminin, one of the major extracellular partners of DG. We have also observed that the lack of DG evokes alterations in the morphological complexity of astrocytes accompanied by a decrease in the level of aquaporin 4 (AQP4), a protein located within astrocyte endfeet surrounding neuronal dendrites and synapses. Regardless of all of these changes, we did not observe any effect of DG silencing on either excitatory or inhibitory synaptic transmission. Likewise, the knockdown of DG had no effect on Psd-95 protein expression. Our results indicate that DG is involved in dendritic spine remodeling that is not functionally reflected. This may suggest the existence of unknown mechanisms that maintain proper synaptic signaling despite impaired structure of dendritic spines. Presumably, astrocytes are involved in these processes.


Assuntos
Espinhas Dendríticas/metabolismo , Distroglicanas/metabolismo , Hipocampo/metabolismo , Plasticidade Neuronal/genética , Transdução de Sinais/genética , Animais , Animais Recém-Nascidos , Aquaporina 4/metabolismo , Astrócitos/metabolismo , Adesão Celular/genética , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/metabolismo , Distroglicanas/genética , Técnicas de Silenciamento de Genes/métodos , Laminina/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos , Ratos Wistar , Sinapses/metabolismo , Transfecção
6.
Neuroinformatics ; 20(3): 679-698, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34743262

RESUMO

Three-dimensional segmentation and analysis of dendritic spine morphology involve two major challenges: 1) how to segment individual spines from the dendrites and 2) how to quantitatively assess the morphology of individual spines. To address these two issues, we developed software called 3dSpAn (3-dimensional Spine Analysis), based on implementing a previously published method, 3D multi-scale opening algorithm in shared intensity space. 3dSpAn consists of four modules: a) Preprocessing and Region of Interest (ROI) selection, b) Intensity thresholding and seed selection, c) Multi-scale segmentation, and d) Quantitative morphological feature extraction. In this article, we present the results of segmentation and morphological analysis for different observation methods and conditions, including in vitro and ex vivo imaging with confocal microscopy, and in vivo observations using high-resolution two-photon microscopy. In particular, we focus on software usage, the influence of adjustable parameters on the obtained results, user reproducibility, accuracy analysis, and also include a qualitative comparison with a commercial benchmark. 3dSpAn software is freely available for non-commercial use at www.3dSpAn.org .


Assuntos
Espinhas Dendríticas , Imageamento Tridimensional , Imageamento Tridimensional/métodos , Microscopia Confocal/métodos , Reprodutibilidade dos Testes , Software
7.
Cells ; 10(8)2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440631

RESUMO

The extracellular matrix (ECM) plays a key role in synaptogenesis and the regulation of synaptic functions in the central nervous system. Recent studies revealed that in addition to dopaminergic and serotoninergic neuromodulatory systems, microglia also contribute to the regulation of ECM remodeling. In the present work, we investigated the physiological role of microglia in the remodeling of perineuronal nets (PNNs), predominantly associated with parvalbumin-immunopositive (PV+) interneurons, and the perisynaptic ECM around pyramidal neurons in the hippocampus. Adult mice were treated with PLX3397 (pexidartinib), as the inhibitor of colony-stimulating factor 1 receptor (CSF1-R), to deplete microglia. Then, confocal analysis of the ECM and synapses was performed. Although the elimination of microglia did not alter the overall number or intensity of PNNs in the CA1 region of the hippocampus, it decreased the size of PNN holes and elevated the expression of the surrounding ECM. In the neuropil area in the CA1 str. radiatum, the depletion of microglia increased the expression of perisynaptic ECM proteoglycan brevican, which was accompanied by the elevated expression of presynaptic marker vGluT1 and the increased density of dendritic spines. Thus, microglia regulate the homeostasis of pre- and postsynaptic excitatory terminals and the surrounding perisynaptic ECM as well as the fine structure of PNNs enveloping perisomatic-predominantly GABAergic-synapses.


Assuntos
Região CA1 Hipocampal/patologia , Sinapses Elétricas/patologia , Potenciais Pós-Sinápticos Excitadores , Matriz Extracelular/patologia , Microglia/patologia , Aminopiridinas/toxicidade , Animais , Brevicam/metabolismo , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/metabolismo , Receptor 1 de Quimiocina CX3C/genética , Sinapses Elétricas/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Rede Nervosa/metabolismo , Rede Nervosa/patologia , Pirróis/toxicidade , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Ácido gama-Aminobutírico/metabolismo
8.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919977

RESUMO

Numerous brain diseases are associated with abnormalities in morphology and density of dendritic spines, small membranous protrusions whose structural geometry correlates with the strength of synaptic connections. Thus, the quantitative analysis of dendritic spines remodeling in microscopic images is one of the key elements towards understanding mechanisms of structural neuronal plasticity and bases of brain pathology. In the following article, we review experimental approaches designed to assess quantitative features of dendritic spines under physiological stimuli and in pathological conditions. We compare various methodological pipelines of biological models, sample preparation, data analysis, image acquisition, sample size, and statistical analysis. The methodology and results of relevant experiments are systematically summarized in a tabular form. In particular, we focus on quantitative data regarding the number of animals, cells, dendritic spines, types of studied parameters, size of observed changes, and their statistical significance.


Assuntos
Citoesqueleto de Actina/genética , Encefalopatias/terapia , Espinhas Dendríticas/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Encefalopatias/fisiopatologia , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia , Transmissão Sináptica
9.
Anal Chem ; 91(16): 10908-10913, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31353889

RESUMO

In this Article, a rotating droplet system is used for simultaneous detection of dopamine and serotonin. Carbon nanoparticles functionalized with sulfonic groups on the electrode surface enables potential discrimination between the neurotransmitters and the most common interferences, whereas the efficient and low-volume hydrodynamic system helps to lower the detection limit toward physiologically relevant concentrations. Here, we present results with a 10 nM limit of detection for serotonin and a 100 nM to 2 µM linear response range from the system in a sample containing an equimolar concentrations of dopamine and serotonin and 0.5 mM concentration of both uric and ascorbic acids. Demonstrating the practical applicability of this method, we measure the concentration of serotonin in 70 µL of mice blood serum samples without additional pretreatment.


Assuntos
Dopamina/sangue , Técnicas Eletroquímicas , Serotonina/sangue , Animais , Carbono/química , Eletrodos , Hidrodinâmica , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/química , Tamanho da Partícula , Propriedades de Superfície
10.
Int J Mol Sci ; 20(7)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965559

RESUMO

Ketamine is an N-methyl-d-aspartate receptor antagonist that has gained wide attention as a potent antidepressant. It has also been recently reported to have prophylactic effects in animal models of depression and anxiety. Alterations of neuroplasticity in different brain regions; such as the hippocampus; prefrontal cortex; and amygdala; are a hallmark of stress-related disorders; and such changes may endure beyond the treatment of symptoms. The present study investigated whether a prophylactic injection of ketamine has effects on structural plasticity in the brain in mice that are subjected to chronic unpredictable stress followed by an 8-day recovery period. Ketamine administration (3 mg/kg body weight) 1 h before stress exposure increased the number of resilient animals immediately after the cessation of stress exposure and positively influenced the recovery of susceptible animals to hedonic deficits. At the end of the recovery period; ketamine-treated animals exhibited significant differences in dendritic spine density and dendritic spine morphology in brain regions associated with depression compared with saline-treated animals. These results confirm previous findings of the prophylactic effects of ketamine and provide further evidence of an association between the antidepressant-like effect of ketamine and alterations of structural plasticity in the brain.


Assuntos
Antidepressivos/uso terapêutico , Região CA3 Hipocampal/efeitos dos fármacos , Depressão/tratamento farmacológico , Hipocampo/efeitos dos fármacos , Ketamina/uso terapêutico , Plasticidade Neuronal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Animais , Comportamento Animal , Depressão/patologia , Modelos Animais de Doenças , Elevação dos Membros Posteriores/fisiologia , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Restrição Física/fisiologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/patologia
11.
Sci Rep ; 8(1): 17142, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442964

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 8(1): 3545, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29476060

RESUMO

The observation and analysis of dendritic spines morphological changes poses a major challenge in neuroscience studies. The alterations of their density and/or morphology are indicators of the cellular processes involved in neural plasticity underlying learning and memory, and are symptomatic in neuropsychiatric disorders. Despite ongoing intense investigations in imaging approaches, the relationship between changes in spine morphology and synaptic function is still unknown. The existing quantitative analyses are difficult to perform and require extensive user intervention. Here, we propose a new method for (1) the three-dimensional (3-D) segmentation of dendritic spines using a multi-scale opening approach and (2) define 3-D morphological attributes of individual spines for the effective assessment of their structural plasticity. The method was validated using confocal light microscopy images of dendritic spines from dissociated hippocampal cultures and brain slices (1) to evaluate accuracy relative to manually labeled ground-truth annotations and relative to the state-of-the-art Imaris tool, (2) to analyze reproducibility of user-independence of the segmentation method, and (3) to quantitatively analyze morphological changes in individual spines before and after chemically induced long-term potentiation. The method was monitored and used to precisely describe the morphology of individual spines in real-time using consecutive images of the same dendritic fragment.


Assuntos
Dendritos/ultraestrutura , Espinhas Dendríticas/ultraestrutura , Hipocampo/diagnóstico por imagem , Lobo Temporal/ultraestrutura , Animais , Dendritos/patologia , Espinhas Dendríticas/patologia , Hipocampo/ultraestrutura , Humanos , Imageamento Tridimensional/métodos , Microscopia Confocal , Plasticidade Neuronal/fisiologia , Neurociências/métodos , Ratos , Lobo Temporal/patologia
13.
Biosensors (Basel) ; 8(1)2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-29301230

RESUMO

Electronic tongue systems are traditionally used to analyse: food products, water samples and taste masking technologies for pharmaceuticals. In principle, their applications are almost limitless, as they are able to almost completely reduce the impact of interferents and can be applied to distinguish samples of extreme complexity as for example broths from different stages of fermentation. Nevertheless, their applications outside the three principal sample types are, in comparison, rather scarce. In this review, we would like to take a closer look on what are real capabilities of electronic tongue systems, what can be achieved using mixed sensor arrays and by introduction of biosensors or molecularly imprinted polymers in the matrix. We will discuss future directions both in the sense of applications as well as system development in the ever-growing trend of low cost analysis.


Assuntos
Nariz Eletrônico , Paladar , Humanos
14.
Bioinformatics ; 32(16): 2490-8, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153678

RESUMO

MOTIVATION: Accurate and effective dendritic spine segmentation from the dendrites remains as a challenge for current neuroimaging research community. In this article, we present a new method (2dSpAn) for 2-d segmentation, classification and analysis of structural/plastic changes of hippocampal dendritic spines. A user interactive segmentation method with convolution kernels is designed to segment the spines from the dendrites. Formal morphological definitions are presented to describe key attributes related to the shape of segmented spines. Spines are automatically classified into one of four classes: Stubby, Filopodia, Mushroom and Spine-head Protrusions. RESULTS: The developed method is validated using confocal light microscopy images of dendritic spines from dissociated hippocampal cultures for: (i) quantitative analysis of spine morphological changes, (ii) reproducibility analysis for assessment of user-independence of the developed software and (iii) accuracy analysis with respect to the manually labeled ground truth images, and also with respect to the available state of the art. The developed method is monitored and used to precisely describe the morphology of individual spines in real-time experiments, i.e. consequent images of the same dendritic fragment. AVAILABILITY AND IMPLEMENTATION: The software and the source code are available at https://sites.google.com/site/2dspan/ under open-source license for non-commercial use. CONTACT: subhadip@cse.jdvu.ac.in or j.wlodarczyk@nencki.gov.pl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Espinhas Dendríticas , Hipocampo , Microscopia Confocal , Dendritos , Reprodutibilidade dos Testes , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...